renga-deployer Documentation
Release 0.1.0.dev20170000

Swiss Data Science Center

Jan 15, 2018

Contents

1 Local

2 Docker

3 Orchestration with Postgres and load-balancer
4 Platform integration

5 User’s Guide

5.1 Installation L. e e e e e
5.2 Configuration oo e e e e e e e e e e e e e e e e
5.3 USAZE . . . v e e e e e
54 Example application oL e e

6 API Reference

6.1 APIDOCS e e e e e
7 Additional Notes

7.1 ContribUting o v e e e e e e e e e e e e e e e e e e

7.2 Changes v o v e e e e e e e e e e e

T3 LACENSE . . . o o e e e e e e e

T4 AUthOIS o e e e
Python Module Index

11
11
11
13
13

15
15

21
21
23
23
23

25

renga-deployer Documentation, Release 0.1.0.dev20170000

Renga Deployer Service.

Contents 1

https://travis-ci.com/SwissDataScienceCenter/renga-deployer

renga-deployer Documentation, Release 0.1.0.dev20170000

2 Contents

CHAPTER 1

Local

$ export FLASK_APP=renga_deployer/app.py
$ flask run

The first time you run the app locally, you may need to build the database tables:

S flask shell
>>> from renga_deployer.app import db
>>> db.create_all ()

renga-deployer Documentation, Release 0.1.0.dev20170000

4 Chapter 1. Local

CHAPTER 2

Docker

$ docker build --tag renga-deployer:latest
$ docker run -p 5000:5000 -v /var/run/docker.sock:/var/run/docker.sock renga-
—deployer:latest

For development, mount the code directly and enable flask debug mode:

$ docker run -p 5000:5000 \
—e FLASK_DEBUG=1 \
-v “pwd’ :/code \
-v /var/run/docker.sock:/var/run/docker.sock \
renga—-deployer:latest

You can test the API by pointing your browser to http://localhost:5000/v 1/ui

http://localhost:5000/v1/ui

renga-deployer Documentation, Release 0.1.0.dev20170000

6 Chapter 2. Docker

CHAPTER 3

Orchestration with Postgres and load-balancer

The packages includes two simple orchestration setup files: docker—compose.yml and docker-compose.
full.yml.

The first includes only the deployer container linked to a postgres database. To use the deployer with postgres:

$ docker-compose up

As before, the service is available on port 5000.

The second can be used as a template to define your own production deployment environment including the Traefik
load balancer and (self-signed) SSL certificates.

$ docker-compose —-f docker-compose.full.yml up

The service is available on https://localhost/api/deployer. You can access the traefik dashboard on
http://localhost:8080/.

http://traefik.io
http://localhost:8080/

renga-deployer Documentation, Release 0.1.0.dev20170000

8 Chapter 3. Orchestration with Postgres and load-balancer

CHAPTER 4

Platform integration

The deployer can optionally integrate with other Renga Platform services. To enable integration, set the appro-
priate environment variables in the form of <SERVICE_NAME_URL> to point to the api URL. For example, set-
ting KNOWLEDGE_GRAPH_URL will ensure that deployment contexts and executions are automatically added to the
knowledge graph. Note that to use the resource manager, you will need to additionally set the DEPLOYER_JWT_KEY.

renga-deployer Documentation, Release 0.1.0.dev20170000

10 Chapter 4. Platform integration

CHAPTER B

User’'s Guide
This part of the documentation will show you how to get started in using Renga-Deployer.
5.1 Installation
Renga-Deployer is on PyPI so all you need is:
’s pip install renga-deployer
5.2 Configuration
Configuration options can be also provided as environmental variables.
renga_deployer.config.DEPLOYER APP_NAME = 'demo-client'
Application name.
renga_deployer.config.DEPLOYER_AUTHORIZATION URL = 'http://localhost:8080/auth/realms/Reng:
OpenlD-Connect authorization endpoint.
renga_deployer.config.DEPLOYER BASE_PATH = '/vl'
Base path for the APL
renga_deployer.config.DEPLOYER _BASE TEMPLATE = 'renga_deployer/base.html’

Default base template for the demo page.

renga_deployer.config.DEPLOYER CLIENT_ID = 'demo-client'
Client identifier used for OIDC authentication.

renga_deployer.config.DEPLOYER CLIENT_ SECRET = None
Client credentials used for OIDC authentication.

11

renga-deployer Documentation, Release 0.1.0.dev20170000

renga_deployer.config.DEPLOYER DEFAULT_BASE URL = '/'
The default base url that is passed inside the deployed container via the DEPLOYER_BASE_URL environment
variable. If an ingress is enabled in a K8S deployer, this variable is changed dynamically per execution.

renga_deployer.config.DEPLOYER DEFAULT_VALUE = 'foobar'
Default value for the application.

renga_deployer.config.DEPLOYER DOCKER_CONTAINER_IP = None
Specific IP for docker-deployed containers.

renga_deployer.config.DEPLOYER_JWT_ISSUER = 'http://localhost:8080/auth/realms/Renga’
JWT issuer used for token verification.

renga_deployer.config.DEPLOYER JWT_KEY = None
Public key used to verify JWT tokens.

renga_deployer.config.DEPLOYER K8S_ CONTAINER IP = None
Specific IP for kubernetes-deployed containers.

renga_deployer.config.DEPLOYER_K8S_INGRESS = None
The class of the ingress controller, for example ‘nginx’, to be used for the endpoints. Set to None (default) or
False to disable ingress

renga_deployer.config.DEPLOYER SWAGGER_UI = False
Enable Swagger UL

renga_deployer.config.DEPLOYER TOKEN_SCOPE_KEY = None
Key inside JWT containing scopes.

Use ‘https://rm.datascience.ch/scope’ in combination with resource manager.

renga_deployer.config.DEPLOYER TOKEN_URL = 'http://localhost:8080/auth/realms/Renga/protocs
OpenlD-Connect token endpoint.

renga_deployer.config.DEPLOYER_URL = 'http://localhost:5000'
Base URL for the service.

renga_deployer.config.KNOWLEDGE_GRAPH_URL = None
Push contexts and executions to the KnowledgeGraph.

renga_deployer.config.RENGA_AUTHORIZATION_CLIENT_ ID = None
Client id for fetching the service access token.

renga_deployer.config.RENGA_AUTHORIZATION_CLIENT_ SECRET = None
Client secret for fetching the service access token.

renga_deployer.config.RENGA_ENDPOINT = 'http://localhost'
URL for other platform services.

renga_deployer.config.RENGA LOGGING_CONFIG = None
Logging configuration file path.

renga_deployer.config.RESOURCE_MANAGER_URL = None
Obtain and validate ResourceManager authorization tokens.

renga_deployer.config.SENTRY DSN = None
The default Sentry environment variable key.

renga_deployer.config.SQLALCHEMY DATABASE_URI = 'sqlite:///deployer.db'
The URI of the database to be used for preserving internal state.

renga_deployer.config.SQLALCHEMY TRACK_MODIFICATIONS = False
Should Flask-SQLAlchemy will track modifications of objects.

12 Chapter 5. User’s Guide

https://rm.datascience.ch/scope

renga-deployer Documentation, Release 0.1.0.dev20170000

renga_deployer.config.WSGI_NUM PROXIES = None
The number of proxy servers in front of the app.

Disable proxy fixer by setting value evaluating to False.

renga_deployer.config.from env (config)
Load configuration options from environment variables.

5.3 Usage

Renga Deployer Service.

5.4 Example application

First install Renga-Deployer, setup the application and load fixture data by running:

$ pip install -e .[all]
$ cd examples

$./app-setup.sh

$./app-fixtures.sh

Next, start the development server:

$ export FLASK_APP=app.py FLASK DEBUG=1
$ flask run

and open the example application in your browser:

’$ open http://127.0.0.1:5000/

To reset the example application run:

’$. /app-teardown.sh

5.3. Usage

13

renga-deployer Documentation, Release 0.1.0.dev20170000

14 Chapter 5. User’s Guide

CHAPTER O

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

6.1 API Docs

6.1.1 Deployer

Deployer sub-module.

class renga_deployer.deployer.Deployer (engines=None, **kwargs)
Handling the executions of contexts.

Create a Deployer instance.
Parameters engines — dict of engine name:uri pairs

create (spec)
Create a context with a given specification.

classmethod from_env (prefix="DEPLOYER_’)
Create a Deployer from environment variables.

get_host_ports (execution)
Fetch hostname and ports for the running execution.

get_logs (execution)
Ask engine to extract logs.

launch (context=None, engine=None, **kwargs)
Create new execution for a given context.

stop (execution, remove=False)
Stop a running execution, optionally removing it from engine.

15

renga-deployer Documentation, Release 0.1.0.dev20170000

6.1.2 Engines

Engine sub-module.

class renga_deployer.engines.DockerEngine
Class for deploying contexts on docker.

Initialize the docker engine.

class EXECUTION_STATE_MAPPING
State mappings for the Docker engine.

client
Create a docker client from local environment.

get_execution_environment (execution) — dict
Retrieve the environment specified for an execution container.

get_host_ports (execution)
Return host ip and port bindings for the running execution.

get_logs (execution)
Extract logs for a container.

get_state (execution)
Return the status of an execution.

launch (execution, **kwargs)
Launch a docker container with the context image.

logger
Create a logger instance.

stop (execution, remove=False)
Stop a running container, optionally removing it.

class renga_deployer.engines.Engine
Base engine class.

get_execution_environment (execution) — dict
Retrieve the environment specified for an execution container.

get_host_port (execution)
Retrieve the host/port where the application can be reached.

get_logs (execution)
Extract logs for a container.

get_state (execution)
Check the state of an execution.

launch (context, **kwargs)
Create new execution environment for a given context.

stop (execution, remove=False)
Stop an execution.

class renga_deployer.engines.K8SEngine (config=None, timeout=10)
Class for deploying contexts on Kubernetes.

Create a K8SNode instance.

class EXECUTION_STATE_MAPPING
State mappings for the K8S engine.

16

Chapter 6. API Reference

renga-deployer Documentation, Release 0.1.0.dev20170000

get_execution_environment (execution) — dict
Retrieve the environment specified for an execution container.

get_host_ports (execution)
Return host ip and port bindings for the running execution.

get_logs (execution, timeout=None, **kwargs)
Extract logs for the Job from the Pod.

get_state (execution)
Get status of a running job.

launch (execution, engine=None, **kwargs)
Launch a Kubernetes Job with the context spec.

logger
Create a logger instance.

stop (execution, remove=False)
Stop a running job.

6.1.3 Extension

Renga Deployer Service.

class renga_deployer.ext.RengaDeployer (app=None)
Renga-Deployer extension.

Extension initialization.

deployer
Returns a local app Deployer.

init_app (app)
Flask application initialization.

init_config (app)
Initialize configuration.

6.1.4 Models

Models sub-module.

class renga_deployer.models.Context (**kwargs)
Execution context.

Additionally it contains two columns created and updated with automatically managed timestamps.
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

classmethod create (spec=None)
Create a new context.

creator
Creator of the context.

6.1. API Docs 17

renga-deployer Documentation, Release 0.1.0.dev20170000

id
Context identifier.
jwt
JWT with which the context has been created.

spec
Context specification.

class renga_deployer.models.Execution (**kwargs)
Represent an execution of a context.

Additionally it contains two columns created and updated with automatically managed timestamps.
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

check_state (states, engine)
Check whether the execution is in one of the specified states.

context_id
Context identifier from which the execution started.

engine
Engine name.

engine_id
Internal identifier returned by an engine.

classmethod from_ context (context, **kwargs)
Create a new execution for a given context.

id
Execution identifier.
Jjwt
JWT with which the execution has been created.

namespace
Namespace name.

class renga_deployer.models.ExecutionStates
Valid execution states.

renga_deployer.models.db = <SQLAlchemy engine=None>
Core database object.

renga_deployer.models.load_jwt ()
Load JWT from a context.

6.1.5 Utils

Utility functions.

renga_deployer.utils.decode_bytes (func)
Function wrapper that always returns string.

renga_deployer.utils.dict_from_labels (labels, separator="=")
Create a multidict from label string.

18 Chapter 6. API Reference

renga-deployer Documentation, Release 0.1.0.dev20170000

renga_deployer.utils. join_url (*args)
Join together url strings.

renga_deployer.utils.resource_available (func)
Function wrapper to catch that something is not available.

Example:
while not resource_available(get_logs()): # this loop continues until the logs are available pass
logs = get_logs()

renga_deployer.utils.validate_uuid (s, version=4)
Check that a string is a valid UUID.

renga_deployer.utils.validate_uuid_args (*names)
Check that input arguments are valid UUIDs.

6.1.6 Views

Renga Deployer Service.

renga_deployer.views.index ()
Basic view.

6.1. API Docs 19

renga-deployer Documentation, Release 0.1.0.dev20170000

20

Chapter 6. API Reference

CHAPTER /

Additional Notes

Notes on how to contribute, legal information and changes are here for the interested.

7.1 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

7.1.1 Types of Contributions
Report Bugs

Report bugs at https://github.com/SwissDataScienceCenter/renga-deployer/issues.
If you are reporting a bug, please include:

* Your operating system name and version.

* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

21

https://github.com/SwissDataScienceCenter/renga-deployer/issues

renga-deployer Documentation, Release 0.1.0.dev20170000

Write Documentation

Renga-Deployer could always use more documentation, whether as part of the official Renga-Deployer docs, in doc-
strings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/SwissDataScienceCenter/renga-deployer/issues.
If you are proposing a feature:

 Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

7.1.2 Get Started!

Ready to contribute? Here’s how to set up renga-deployer for local development.
1. Fork the SwissDataScienceCenter/renga-deployer repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/renga-deployer.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv renga-deployer
$ cd renga-deployer/
$ pip install -e .[all]

4. Create a branch for local development:

’$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass tests:

’$./run-tests.sh

The tests will provide you with test coverage and also check PEP8 (code style), PEP257 (documentation), flake8
as well as build the Sphinx documentation and run doctests.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s

-m "component: title without verbs"

-m "x NEW Adds your new feature."

-m "% FIX Fixes an existing issue."

-m "+ BETTER Improves and existing feature."

-m "% Changes something that should not be visible in release notes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

22 Chapter 7. Additional Notes

https://github.com/SwissDataScienceCenter/renga-deployer/issues

renga-deployer Documentation, Release 0.1.0.dev20170000

7.1.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests and must not decrease test coverage.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring.

3. The pull request should work for Python 2.7, 3.3, 34 and 3.5. Check https://travis-ci.org/
SwissDataScienceCenter/renga-deployer/pull_requests and make sure that the tests pass for all supported
Python versions.

7.2 Changes

Version 0.1.0 (released TBD)

* Initial public release.

7.3 License

Copyright 2017 - Swiss Data Science Center (SDSC) A partnership between Ecole Polytechnique Fédérale de Lau-
sanne (EPFL) and Eidgenossische Technische Hochschule Ziirich (ETHZ).

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

7.4 Authors

Renga Deployer Service.

¢ Swiss Data Science Center <contact@datascience.ch>

7.2. Changes 23

https://travis-ci.org/SwissDataScienceCenter/renga-deployer/pull_requests
https://travis-ci.org/SwissDataScienceCenter/renga-deployer/pull_requests
http://www.apache.org/licenses/LICENSE-2.0
mailto:contact@datascience.ch

renga-deployer Documentation, Release 0.1.0.dev20170000

24

Chapter 7. Additional Notes

Python Module Index

r

renga_deployer,
renga_deployer.
renga_deployer
renga_deployer.
renga_deployer.
renga_deployer.
renga_deployer.
renga_deployer.

13
config, 11

.deployer, 15

engines, 16
ext, 17
models, 17
utils, 18
views, 19

25

renga-deployer Documentation, Release 0.1.0.dev20170000

26

Python Module Index

Index

C

check_state()
method), 18

client (renga_deployer.engines.DockerEngine attribute),
16

Context (class in renga_deployer.models), 17

context_id (renga_deployer.models.Execution attribute),
18

create() (renga_deployer.deployer.Deployer method), 15

create() (renga_deployer.models.Context class method),
17

creator (renga_deployer.models.Context attribute), 17

D

db (in module renga_deployer.models), 18

decode_bytes() (in module renga_deployer.utils), 18

Deployer (class in renga_deployer.deployer), 15

deployer (renga_deployer.ext.RengaDeployer attribute),
17

(renga_deployer.models.Execution

DEPLOYER_APP_NAME (in module
renga_deployer.config), 11
DEPLOYER_AUTHORIZATION_URL (in module
renga_deployer.config), 11
DEPLOYER_BASE_PATH (in module
renga_deployer.config), 11
DEPLOYER_BASE_TEMPLATE (in module
renga_deployer.config), 11
DEPLOYER_CLIENT_ID (in module
renga_deployer.config), 11
DEPLOYER_CLIENT_SECRET (in module
renga_deployer.config), 11
DEPLOYER_DEFAULT_BASE_URL (in module
renga_deployer.config), 11
DEPLOYER_DEFAULT_VALUE (in module
renga_deployer.config), 12
DEPLOYER_DOCKER_CONTAINER_IP (in module
renga_deployer.config), 12
DEPLOYER_JWT_ISSUER (in module

renga_deployer.config), 12

DEPLOYER_JWT_KEY (in module
renga_deployer.config), 12
DEPLOYER_K8S_CONTAINER_IP (in module
renga_deployer.config), 12
DEPLOYER_K8S_INGRESS (in module
renga_deployer.config), 12
DEPLOYER_SWAGGER_UI (in module
renga_deployer.config), 12
DEPLOYER_TOKEN_SCOPE_KEY (in module
renga_deployer.config), 12
DEPLOYER_TOKEN_URL (in module

renga_deployer.config), 12
DEPLOYER_URL (in module renga_deployer.config),
12
dict_from_labels() (in module renga_deployer.utils), 18
DockerEngine (class in renga_deployer.engines), 16
DockerEngine. EXECUTION_STATE_MAPPING (class
in renga_deployer.engines), 16

E

Engine (class in renga_deployer.engines), 16

engine (renga_deployer.models.Execution attribute), 18

engine_id (renga_deployer.models.Execution attribute),
18

Execution (class in renga_deployer.models), 18

ExecutionStates (class in renga_deployer.models), 18

F

from_context() (renga_deployer.models.Execution class
method), 18

from_env() (in module renga_deployer.config), 13

from_env() (renga_deployer.deployer.Deployer
method), 15

class

G

get_execution_environment()
(renga_deployer.engines.DockerEngine
method), 16

27

renga-deployer Documentation, Release 0.1.0.dev20170000

get_execution_environment()
(renga_deployer.engines.Engine
16

get_execution_environment()
(renga_deployer.engines. K8SEngine method),
16

get_host_port()
method), 16

get_host_ports()
method), 15

get_host_ports() (renga_deployer.engines.DockerEngine
method), 16

get_host_ports() (renga_deployer.engines.K8SEngine
method), 17

get_logs() (renga_deployer.deployer.Deployer method),
15

get_logs()

method),

(renga_deployer.engines.Engine

(renga_deployer.deployer.Deployer

(renga_deployer.engines.DockerEngine
method), 16
get_logs() (renga_deployer.engines.Engine method), 16
get_logs() (renga_deployer.engines. K8SEngine method),
17
get_state() (renga_deployer.engines.DockerEngine
method), 16
get_state() (renga_deployer.engines.Engine method), 16
get_state() (renga_deployer.engines. K8SEngine method),
17

id (renga_deployer.models.Context attribute), 17

id (renga_deployer.models.Execution attribute), 18
index() (in module renga_deployer.views), 19

init_app() (renga_deployer.ext.RengaDeployer method),

17
init_config() (renga_deployer.ext.RengaDeployer
method), 17

J

join_url() (in module renga_deployer.utils), 18
jwt (renga_deployer.models.Context attribute), 18
jwt (renga_deployer.models.Execution attribute), 18

K

K8SEngine (class in renga_deployer.engines), 16

K8SEngine. EXECUTION_STATE_MAPPING (class in
renga_deployer.engines), 16

KNOWLEDGE_GRAPH_URL
renga_deployer.config), 12

(in module

L

launch() (renga_deployer.deployer.Deployer method), 15

launch() (renga_deployer.engines.K8SEngine method),
17

load_jwt() (in module renga_deployer.models), 18

logger (renga_deployer.engines.DockerEngine attribute),
16

logger (renga_deployer.engines.K8SEngine attribute), 17

N

namespace (renga_deployer.models.Execution attribute),
18

R

RENGA_AUTHORIZATION_CLIENT_ID (in module
renga_deployer.config), 12
RENGA_AUTHORIZATION_CLIENT_SECRET
module renga_deployer.config), 12
renga_deployer (module), 13
renga_deployer.config (module), 11
renga_deployer.deployer (module), 15
renga_deployer.engines (module), 16
renga_deployer.ext (module), 17
renga_deployer.models (module), 17
renga_deployer.utils (module), 18
renga_deployer.views (module), 19
RENGA_ENDPOINT (in
renga_deployer.config), 12
RENGA_LOGGING_CONFIG
renga_deployer.config), 12
RengaDeployer (class in renga_deployer.ext), 17
resource_available() (in module renga_deployer.utils), 19
RESOURCE_MANAGER_URL (in module
renga_deployer.config), 12

(in

module

(in module

S

SENTRY_DSN (in module renga_deployer.config), 12

spec (renga_deployer.models.Context attribute), 18

SQLALCHEMY_DATABASE_URI (in module
renga_deployer.config), 12

SQLALCHEMY_TRACK_MODIFICATIONS (in mod-
ule renga_deployer.config), 12

stop() (renga_deployer.deployer.Deployer method), 15

stop() (renga_deployer.engines.DockerEngine method),
16

stop() (renga_deployer.engines.Engine method), 16

stop() (renga_deployer.engines. K8SEngine method), 17

Vv

validate_uuid() (in module renga_deployer.utils), 19
validate_uuid_args() (in module renga_deployer.utils), 19

launch() (renga_deployer.engines.DockerEngine W

method), 16 WSGI_NUM_PROXIES (in module
launch() (renga_deployer.engines.Engine method), 16 renga_deployer.config), 12
28 Index

	Local
	Docker
	Orchestration with Postgres and load-balancer
	Platform integration
	User’s Guide
	Installation
	Configuration
	Usage
	Example application

	API Reference
	API Docs

	Additional Notes
	Contributing
	Changes
	License
	Authors

	Python Module Index

